SUMMARYThe frequency of a pattern may not be a sufficient criterion for identifying meaningful patterns in a database. The temporal regularity of a pattern can be another key criterion for assessing the importance of a pattern in several applications. A pattern can be said regular if it appears at a regular user-defined interval in the database. Even though there have been some efforts to discover periodic patterns in time-series and sequential data, none of the existing studies have provided an appropriate method for discovering the patterns that occur regularly in a transactional database. Therefore, in this paper, we introduce a novel concept of mining regular patterns from transactional databases. We also devise an efficient tree-based data structure, called a Regular Pattern tree (RP-tree in short), that captures the database contents in a highly compact manner and enables a pattern growth-based mining technique to generate the complete set of regular patterns in a database for a user-defined regularity threshold. Our performance study shows that mining regular patterns with an RP-tree is time and memory efficient, as well as highly scalable.