Abstract-Mining high utility itemsets from transactional databases is an important data mining task, which refers to the discovery of itemsets with high utilities (e.g. high profits). Although several studies have been carried out, current methods may present too many high utility itemsets for users, which degrades the performance of the mining task in terms of execution time and memory requirement. To achieve high efficiency for the mining task and provide a concise mining result to users, we propose a novel framework in this paper for mining closed + high utility itemsets, which serves as a compact and lossless representation of high utility itemsets. We present an efficient algorithm called CHUD (Closed + High utility itemset Discovery) for mining closed + high utility itemsets. Further, a method called DAHU (Derive All High Utility itemsets) is proposed to recover all high utility itemsets from the set of closed + high utility itemsets without accessing the original database. Results of experiments on real and synthetic datasets show that CHUD and DAHU are very efficient and that our approach achieves a massive reduction in the number of high utility itemsets (up to 800 times in our experiments). In addition, when all high utility itemsets can be recovered by DAHU, the combination of CHUD and DAHU outperforms the state-of-the-art algorithms for mining high utility itemsets.