2007
DOI: 10.1016/j.cam.2006.10.077
|View full text |Cite
|
Sign up to set email alerts
|

An efficient algorithm for regularization of Laplace transform inversion in real case

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2011
2011
2020
2020

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…The chosen starting point for assimilating data is been fixed as the first of August and the first of March respectively for both subdomains. As the DA problem is an inverse ill posed problem [17,18,19], a very important topic is the choice of the regularization parameters in (5) then in (6) (see Step 6 and Step 7 of Algorithm 6). Results we carried out show as the solution of the S3DVAR software depends on these parameters in terms of both accuracy (e.g.…”
Section: The S3dvar Computational Kernelmentioning
confidence: 99%
“…The chosen starting point for assimilating data is been fixed as the first of August and the first of March respectively for both subdomains. As the DA problem is an inverse ill posed problem [17,18,19], a very important topic is the choice of the regularization parameters in (5) then in (6) (see Step 6 and Step 7 of Algorithm 6). Results we carried out show as the solution of the S3DVAR software depends on these parameters in terms of both accuracy (e.g.…”
Section: The S3dvar Computational Kernelmentioning
confidence: 99%
“…GMRES 算法还可用于求解诸如最优控制、滤波估计、去耦、降阶等控制理论中的微分 Riccati 方程 [27] 。在 大特征值问题和边值问题中会出现多元线性系统, 线性控制、 滤波理论、 图像修复等方面包含了著名的 Lyapunov 矩阵方程、Sylvester 矩阵方程和 Stein 矩阵方程,这些方程同样是典型的多元线性系统问题,全局 GMRES 算法 正好为这些问题的解决提供了一个很好的工具,不同的数值实验更显示出该方法收敛行为方面的优势 [28,29] 。 GMRES 算法还用于求解 Toeplitz 方程、Helmholtz 方程和 Navier-Stokes 方程等,预处理 GMRES 并行算法也得 到了很好的应用 [30][31][32][33] 。在太阳物理的研究中,我国科学家颜毅华于 1995 年首次推导出太阳常 alpha 无力场的边 界积分表示, 并用边界元方法实现了数值求解 [34] ; Li 等人 2007 年对颜毅华的算法进行了改进, 他们引入 GMRES 算法来解决边界元方程组;由此,对 10,000 阶以上的矩阵,用 GMRES 算法使得计算效率提高了 1000~9000 倍 [35][20] 实型 Laplace 变换的线性方程组 光谱延迟修正技术 [21] 微分代数方程的初始值问题 控制、光辐射和流体力学 [23][24][25][26] 近海水域控制方程、光学辐射传输方程、计算流体力学 Euler 方程 控制理论 [27] 微分 Riccati 方程 大型奇异值问题 [28] 广义希尔维斯特矩阵方程 太阳物理研究 …”
Section: Gmres 算法的应用简况unclassified
“…D'Amore and Murli [2002] proposed an inversion algorithm based on the Fourier series expansion of the unknown function where the Fourier coefficients are approximated using a Tikhonov regularization method. Furthermore, Campagna et al [2007] highlighted that since the resulting discrete problem has a condition number that grows almost exponentially, the difficulty is the ability of extracting, only using data on the real axis, the maximum attainable accuracy on the solution.…”
Section: Introductionmentioning
confidence: 99%