2023
DOI: 10.3390/pr11061826
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient and Improved Coronavirus Herd Immunity Algorithm Using Knowledge-Driven Variable Neighborhood Search for Flexible Job-Shop Scheduling Problems

Abstract: By addressing the flexible job shop scheduling problem (FJSP), this paper proposes a new type of algorithm for the FJSP. We named it the hybrid coronavirus population immunity optimization algorithm. Based on the characteristics of the problem, firstly, this paper redefined the discretized two-stage individual encoding and decoding scheme. Secondly, in order to realize the multi-scale search of the solution space, a multi-population update mechanism is designed, and a collaborative learning method is proposed … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 27 publications
0
2
0
Order By: Relevance
“…It is very important and challenging to design efficient algorithms to address it in large-sized cases, such as simulated annealing (SA) [6] and fuzzy logic (FL) [11]. Among them, swarm intelligence (SI) algorithms have received great attention [23,26], i.e., genetic algorithms (GAs) [2,4,16], particle swarm optimiza-tion (PSO) [6,19], ant colony optimization (ACO) [8], deep learning (DL), artificial neural networks (ANNs) [12,27], artificial bee colony (ABC) [13], adaptive memetic algorithms (AMAs) [14], migrating birds optimization [17], grey wolf optimization (GWO) [20], quantum cat swarm optimization [22], artificial slime mold [28], artificial Physarum swarm [29], coronavirus herd immunity [30], artificial plant community [31,32], whale optimization [33], artificial algae [34], and the Jaya algorithm [35]. However, these swarm intelligence algorithms are also prone to fall into local optimization prematurely, and some scholars have tried to improve algorithm performance using hybrid algorithms [6,36].…”
Section: Literature Reviewmentioning
confidence: 99%
See 1 more Smart Citation
“…It is very important and challenging to design efficient algorithms to address it in large-sized cases, such as simulated annealing (SA) [6] and fuzzy logic (FL) [11]. Among them, swarm intelligence (SI) algorithms have received great attention [23,26], i.e., genetic algorithms (GAs) [2,4,16], particle swarm optimiza-tion (PSO) [6,19], ant colony optimization (ACO) [8], deep learning (DL), artificial neural networks (ANNs) [12,27], artificial bee colony (ABC) [13], adaptive memetic algorithms (AMAs) [14], migrating birds optimization [17], grey wolf optimization (GWO) [20], quantum cat swarm optimization [22], artificial slime mold [28], artificial Physarum swarm [29], coronavirus herd immunity [30], artificial plant community [31,32], whale optimization [33], artificial algae [34], and the Jaya algorithm [35]. However, these swarm intelligence algorithms are also prone to fall into local optimization prematurely, and some scholars have tried to improve algorithm performance using hybrid algorithms [6,36].…”
Section: Literature Reviewmentioning
confidence: 99%
“…The "Ref" column in Table 2 gives the benchmark values from [37], which are weak lower-bound values obtained only with constraint propagation. The solving errors were calculated as in Equation (30). As can be seen from the results in Table 2, the APPC can outperform most algorithms with better solutions and a shorter computation time.…”
Section: Case 1: 25 Benchmark Instances Without Load/unload Areasmentioning
confidence: 99%