The brain, as the central nervous system's most critical part, can develop abnormal growths of cells known as tumors. Cancer is the term used to describe malignant tumors. Medical imaging modalities, such as computed tomography (CT) or magnetic resonance imaging (MRI), are commonly used to detect cancerous regions in the brain. Other techniques, such as positron emission tomography (PET), cerebral arteriography, lumbar puncture, and molecular testing, are also utilized for brain tumor detection. MRI scans provide detailed information concerning delicate tissue, which aids in diagnosing brain tumors. MRI scan images are analyzed to assess the disease condition objectively. The proposed system aims to identify abnormal brain images from MRI scans accurately. The segmented mask can estimate the tumor's density, which is helpful in therapy. Deep learning techniques are employed to automatically extract features and detect abnormalities from MRI images. The proposed system utilizes a convolutional neural network (CNN), a popular deep learning technique, to analyze MRI images and identify abnormal brain scans with high accuracy. The system's training process involves feeding the CNN with large datasets of normal and abnormal MRI images to learn how to differentiate between the two. During testing, the system classifies MRI images as either normal or abnormal based on the learned features. The system's ability to accurately identify abnormal brain scans can aid medical practitioners in making informed decisions and providing better patient care. Additionally, the system's ability to estimate tumor density from the segmented mask provides additional information to guide therapy. The proposed system offers a promising solution for improving the accuracy and efficiency of brain tumor detection from MRI images, which is critical for early detection and treatment.