The device-to-device (D2D) networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network, forming a heterogeneous 5G and beyond (B5G) communication network. D2D communication in a cellular cell will boost the efficiency of the spectrum, increase the ability of the device, and reduce the communication burden of base stations through the sharing of approved cell resources, causing serious interference as well. The device-to-device (D2D) networking technology is extended to the conventional cellular network to boost the communication efficiency of the entire network, forming a heterogeneous 5G communication network. D2D communication in a cellular cell will boost the efficiency of the spectrum, increase the ability of the device, and reduce the communication burden of base stations through the sharing of approved cell resources, causing serious interference as well. This paper proposes an efficient algorithm to minimize interference, based on the parity of the number of antennas, to resolve this issue. The primary concept is to generate the cellular connection precoding matrix by minimizing the power of interference from the base station to non-targeted receivers. Then through the criterion of maximum SINR, the interference suppression matrix of the cellular connection is obtained. Finally, by removing intra-interference through linear interference alignment, the maximum degree of freedom is obtained. The results of the simulation show that the proposed algorithm efficiently increases the performance of the spectrum, decreases interference, improves the degrees of freedom and energy efficiency compared to current algorithms.