The fractional telegraph equation is a kind of important evolution equation, which has an important application in signal analysis such as transmission and propagation of electrical signals. However, it is difficult to obtain the corresponding analytical solution, so it is of great practical value to study the numerical solution. In this paper, the alternating segment pure explicit-implicit (PASE-I) and implicit-explicit (PASI-E) parallel difference schemes are constructed for time fractional telegraph equation. Based on the alternating segment technology, the PASE-I and PASI-E schemes are constructed of the classic explicit scheme and implicit scheme. It can be concluded that the schemes are unconditionally stable and convergent by theoretical analysis. The convergence order of the PASE-I and PASI-E methods is second order in spatial direction and 3-α order in temporal direction. The numerical results are in agreement with the theoretical analysis, which shows that the PASE-I and PASI-E schemes are superior to the classical implicit schemes in both accuracy and efficiency. This implies that the parallel difference schemes are efficient for solving the time fractional telegraph equation.