An efficient conjugate gradient based Cholesky CMA‐ES estimation algorithm for nonlinear systems
Yawen Mao,
Chen Xu,
Jing Chen
et al.
Abstract:This article studies the parameter estimation problems of nonlinear systems with colored noise using the covariance matrix adaptation evolution strategy (CMA‐ES), which is one of the most competitive evolutionary algorithms available and has been applied in the area of reinforcement learning and process control. However, a major limitation that impedes the application of the CMA‐ES is the high computational complexity caused by matrix decomposition. To solve this problem, an efficient Cholesky CMA‐ES which use… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.