Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Retrieval of similar images from large dataset of brain images across patients would help the experts in the decision diagnosis process of diseases. Generally used feature extraction methods are color, texture and shape. In medical images texture and shape features are most efficient. Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) are good descriptor for brain MR image retrieval. But there are many challenges facing in medical application. An empirical study of the impact of increasing bins number in the HOG descriptor concluded that larger the number is more accurate the descriptor is. In fact this is due to the reduction of orientations range that each bin covers. Despite the efficiency of augmenting the bins number, this technique has limited spatial support as the augmentation of the number of bins used leads to increase the histogram dimension. So here proposed a method called Histogram of Fuzzy Oriented Gradients (HFOG), in which a pixel can belong several bins with different degrees. The Local Binary Patterns feature extraction method is widely used for texture analysis; however, the original LBP is based on hard thresholding the neighborhood of each pixel. Therefore, texture representation with LBP is very sensitive to noise and cannot distinguish between a strong and a weak pattern. In this study, Fuzzy Local Binary Patterns was introduced to improve the original LBP.
Retrieval of similar images from large dataset of brain images across patients would help the experts in the decision diagnosis process of diseases. Generally used feature extraction methods are color, texture and shape. In medical images texture and shape features are most efficient. Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) are good descriptor for brain MR image retrieval. But there are many challenges facing in medical application. An empirical study of the impact of increasing bins number in the HOG descriptor concluded that larger the number is more accurate the descriptor is. In fact this is due to the reduction of orientations range that each bin covers. Despite the efficiency of augmenting the bins number, this technique has limited spatial support as the augmentation of the number of bins used leads to increase the histogram dimension. So here proposed a method called Histogram of Fuzzy Oriented Gradients (HFOG), in which a pixel can belong several bins with different degrees. The Local Binary Patterns feature extraction method is widely used for texture analysis; however, the original LBP is based on hard thresholding the neighborhood of each pixel. Therefore, texture representation with LBP is very sensitive to noise and cannot distinguish between a strong and a weak pattern. In this study, Fuzzy Local Binary Patterns was introduced to improve the original LBP.
In recent social media applications, descriptive information is collected through user tagging, such as face recognition, and automatic environment sensing, such as GPS. There are many applications that recognize landmarks using information gathered from GPS data. However, GPS is dependent on the location of the camera, not the landmark. In this research, we propose an automatic landmark tagging scheme using secondary regions to distinguish between similar landmarks. We propose two algorithms: 1) landmark tagging by secondary objects and 2) automatic new landmark recognition. Images of 30 famous landmarks from various public databases were used in our experiment. Results show increments of tagged areas and the improvement of landmark tagging accuracy.
Content-based image retrieval is a process framework that applies computer vision techniques for searching and managing large image collections more efficiently. With the growth of large digital image collections triggered by rapid advances in electronic storage capacity and computing power, there is a growing need for devices and computer systems to support efficient browsing, searching, and retrieval for image collections. Hence, the aim of this project is to develop a content-based image retrieval system that can be implemented in an image gallery desktop application to allow efficient browsing through three different search modes: retrieval by image query, retrieval by facial recognition, and retrieval by text or tags. In this project, the MPEG-7-like Powered Localized Color and Edge Directivity Descriptor is used to extract the feature vectors of the image database and the facial recognition system is built around the Eigenfaces concept. A graphical user interface with the basic functionality of an image gallery application is also developed to implement the three search modes. Results show that the application is able to retrieve and display images in a collection as thumbnail previews with high retrieval accuracy and medium relevance and the computational requirements for subsequent searches were significantly reduced through the incorporation of text-based image retrieval as one of the search modes. All in all, this study introduces a simple and convenient way of offline image searches on desktop computers and provides a stepping stone to future content-based image retrieval systems built for similar purposes. Keyword:Auto-tagging Content-based image retrieval Mpeg-& powered localized descriptor Principal component analysis Text-based image retrieval
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.