An Efficient Convolutional Neural Network with Supervised Contrastive Learning for Multi-Target DOA Estimation in Low SNR
Yingchun Li,
Zhengjie Zhou,
Cheng Chen
et al.
Abstract:In this paper, a modified high-efficiency Convolutional Neural Network (CNN) with a novel Supervised Contrastive Learning (SCL) approach is introduced to estimate direction-of-arrival (DOA) of multiple targets in low signal-to-noise ratio (SNR) regimes with uniform linear arrays (ULA). The model is trained using an on-grid setting, and thus the problem is modeled as a multi-label classification task. Simulation results demonstrate the robustness of the proposed approach in scenarios with low SNR and a small nu… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.