2023
DOI: 10.1049/ipr2.12893
|View full text |Cite
|
Sign up to set email alerts
|

An efficient deep multi‐task learning structure for covid‐19 disease

Abstract: COVID‐19 has had a profound global impact, necessitating the development of infection detection systems based on machine learning. This paper presents a Multi‐task architecture that addresses the classification and segmentation tasks for COVID‐19 detection. The model comprises an encoder for feature representation, a decoder for segmentation, and a multi‐layer perceptron for classification. Evaluations conducted on two datasets demonstrate the model's performance in both classification and segmentation. To enh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 39 publications
0
0
0
Order By: Relevance