Abstract:One of the most popular methods for learning Nash equilibrium (NE) in large-scale imperfect information extensive-form games (IIEFGs) is the neural variants of counterfactual regret minimization (CFR). CFR is a special case of Follow-The-Regularized-Leader (FTRL). At each iteration, the neural variants of CFR update the agent's strategy via the estimated counterfactual regrets. Then, they use neural networks to approximate the new strategy, which incurs an approximation error. These approximation errors will a… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.