In comparison with vehicle-to-pedestrian collision, pedestrian-to-ground contact usually results in more unpredictable injuries (e.g., intracranial, neck, and abdominal injuries). Although there are many studies for different applications of such methods, this paper conducts an in-depth analysis of urban traffic pedestrian accidents. The effects of pedestrian rotation angle (PRA) and pedestrian facing orientation (PFO) on head and neck injury risk in a ground contact are investigated by the finite element numerical models and different probabilistic analyses. It goes without saying that this study provides a theoretical basis for the prediction and protection study of pedestrian ground contact injury risk. In our experiments, 24 pedestrian-to-ground simulations are carried out by the THUMS v4.0.2 model considering eight PRAs (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°, 360°) and three PFOs (x+, x−, y+). Each test was simulated with loading the average linear and rotational velocities that obtained from real-world pedestrian accidents at the pedestrian’s center of gravity. The results show that both PRAs and PFOs have significant impacts on head and neck injuries. Head HIC value caused by PRA 0–135° is much higher than that caused by PRA 180–315°. Neck injury risk caused by PRA 180° is the greatest one in comparison with other PRAs. The PRAs 90° and 270° usually induce a relatively lower neck injury risk. For PFO, the risk of head and neck injury was lower than PFOy+ and PFOx+ or PFOx−, which means PFOy+ was a safer landing orientation for both head and neck. The potential risk of head and neck injuries caused by the ground contact was strongly associated with the symmetry/asymmetric features of human anatomy.