Intelligent navigation is a crucial component of intelligent ships. This study focuses on the situational awareness of intelligent navigation in inland waterways with high vessel traffic densities and increased collision risks, which demand enhanced vessel situational awareness. To address perception data association issues in situational awareness, particularly in scenarios with winding waterways and multiple vessel encounters, a method based on trajectory characteristics is proposed to determine associations between Automatic Identification System (AIS) and radar objects, facilitating the fusion of heterogeneous data. Firstly, trajectory characteristics like speed, direction, turning rate, acceleration, and trajectory similarity were extracted from ship radar and AIS data to construct labeled trajectory datasets. Subsequently, by employing the Support Vector Machine (SVM) model, we accomplished the discernment of associations among the trajectories of vessels collected through AIS and radar, thereby achieving the association of heterogeneous data. Finally, through a series of experiments, including overtaking, encounters, and multi-target scenarios, this research substantiated the method, achieving an F1 score greater than 0.95. Consequently, this study can furnish robust support for the perception of intelligent vessel navigation in inland waterways and the elevation of maritime safety.