A method for developing a numerical rotor model and its further verification based on the results of virtual static structural and modal tests was proposed. Approbation of the method was performed on a model of a low pressure rotor of a high-bypass turbofan engine constructed in a software system for rotor dynamics simulation DYNAMICS R4. Refined on the basis of the results of virtual static structural tests, the model of the rotor main force action line showed good agreement in frequencies and mode shapes with the results of a finite element model, obtained during a virtual modal test.