2019
DOI: 10.1109/access.2019.2947717
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Framework for Animal Breeds Classification Using Semi-Supervised Learning and Multi-Part Convolutional Neural Network (MP-CNN)

Abstract: The automatic classification of animal images is an onerous task due to the challenging image conditions, especially when it comes to animal breeds. In this paper, we built a semi-supervised learning based Multi-part Convolutional Neural Network (MP-CNN) that classifies 35,992 animal images from ImageNet into 27 different classes of animals. The proposed model classifies the animals on both generic and fine-grained level. The animal breeds are accurately classified using Multi-part Convolutional Neural Network… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(7 citation statements)
references
References 40 publications
0
4
0
3
Order By: Relevance
“…With respect to the detection of animals, a limited body of research has been devoted to addressing this paramount concern. [11] proposed a semi-supervised learning-based Multi-part CNN (MP CNN) for wildlife detection, which provides state-of-the-art performance. More specifically, for detecting endangered animals, an accurate real-time object detection framework WilDect-YOLO [1] has been proposed for detecting multi-class endangered wildlife species.…”
Section: Animal Detectionmentioning
confidence: 99%
“…With respect to the detection of animals, a limited body of research has been devoted to addressing this paramount concern. [11] proposed a semi-supervised learning-based Multi-part CNN (MP CNN) for wildlife detection, which provides state-of-the-art performance. More specifically, for detecting endangered animals, an accurate real-time object detection framework WilDect-YOLO [1] has been proposed for detecting multi-class endangered wildlife species.…”
Section: Animal Detectionmentioning
confidence: 99%
“…1.Meena et.al [1] developed the Multi-part Convolutional Neural Network (MP-ORB), which uses semi-supervised learning to categorize 35,992 animal photos from ImageNet into 27 different animal classes. The suggested classification system divides the creatures into broad and specific categories.…”
Section: Literature Surveymentioning
confidence: 99%
“…Pengolahan Citra Pengolahan citra (image processing) merupakan proses yang bertujuan untuk memanipulasi dan menganalisis citra dengan bantuan komputer. Beberapa contoh bidang kehidupan yang membutuhkan pengolahan citra digital diantaranya adalah bidang kesehatan: segmentasi untuk membedakan bagian -bagian sel darah, deteksi kerusakan organ tubuh, deteksi keberadaan [6]. Pengolahan citra dilakukan untuk melakukan transformasi suatu gambar/citra menjadi informasi yang dapat dipahami oleh manusia dengan menggunakan Teknik tertentu diawali dengan akuisisi citra atau proses menangkap citra analog sehingga diperoleh citra digital menggunakan kamera digital.…”
Section: Submitted Date : 04 Januari 2023unclassified
“…Seperti: Exposure, Contrast, Dynamic Range, Saturation, dan masih banyak lagi. Dengan memvisualisasikan histogram, kita dapat meningkatkan tampilan visual suatu citra dan juga dapat mengetahui jenis pemrosesan citra apa yang dapat diterapkan dengan membandingkan histogram suatu citra [6]. Gambar disimpan sebagai nilai piksel, setiap nilai piksel mewakili nilai intensitas warna.…”
Section: Histogram 8 Binunclassified