A quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+$$\epsilon$$
ϵ
)-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well.