Path planning algorithms are used by mobile robots, unmanned aerial vehicles, and autonomous cars in order to identify safe, efficient, collision-free, and least-cost travel paths from an origin to a destination. Choosing an appropriate path planning algorithm helps to ensure safe and effective point-to-point navigation, and the optimal algorithm depends on the robot geometry as well as the computing constraints, including static/holonomic and dynamic/non-holonomically-constrained systems, and requires a comprehensive understanding of contemporary solutions. The goal of this paper is to help novice practitioners gain an awareness of the classes of path planning algorithms used today and to understand their potential use cases—particularly within automated or unmanned systems. To that end, we provide broad, rather than deep, coverage of key and foundational algorithms, with popular algorithms and variants considered in the context of different robotic systems. The definitions, summaries, and comparisons are relevant to novice robotics engineers and embedded system developers seeking a primer of available algorithms.