2001
DOI: 10.1006/jcph.2001.6853
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Implicit Discontinuous Spectral Galerkin Method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
70
0
5

Year Published

2005
2005
2016
2016

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 148 publications
(75 citation statements)
references
References 24 publications
0
70
0
5
Order By: Relevance
“…As in a usual FV method, the Riemann solver [46] stabilizes the solution. However in this case higher accuracy may be achieved by increasing the order of the approximation, N, as well as by reducing the size of the elements, h. The DGSEM is used in a wide range of applications such as compressible flows [5,35], electromagnetics and optics [1,13,14,29], heat transfer [32], aeroacoustics [9,36,42,43], meteorology [22,23,38], and geophysics [16,17].…”
mentioning
confidence: 99%
“…As in a usual FV method, the Riemann solver [46] stabilizes the solution. However in this case higher accuracy may be achieved by increasing the order of the approximation, N, as well as by reducing the size of the elements, h. The DGSEM is used in a wide range of applications such as compressible flows [5,35], electromagnetics and optics [1,13,14,29], heat transfer [32], aeroacoustics [9,36,42,43], meteorology [22,23,38], and geophysics [16,17].…”
mentioning
confidence: 99%
“…Several authors have applied Newton GMRES and implicit Runge-Kutta methods to the resolution of compressible Euler, Navier-Stokes and RANS equations in the context of DG discretizations [6,7,22,30,39]. Various preconditioned iterative algorithms have been introduced showing the potential benefits of taking advantage of either the block structure of the Jacobian matrix or a factorization using reordering [18,25,38,39]. In [29] a block diagonal preconditioner for linear problems based upon a domain decomposition method with static condensation is seen to achieve an optimal convergence where the convergence rate of the implicit iterative solver is independent of the number of DOF.…”
mentioning
confidence: 99%
“…За последние десятилетия было разработано большое количество неявных схем, основанных на методах полной и приближенной факторизации и мето-дах расщепления по физическим процессам и пространственным направлени-ям (позволяющим свести решение многомерной задачи к последовательности одномерных аналогов), в той или иной степени обеспечивающих компромисс между высокой скоростью сходимости, требованиями к памяти и эффектив-ностью параллельной реализации [2][3][4][5][6][7][8][9][10]. Настоящая работа является развитием предложенного авторами в рабо-те [11] подхода к построению эффективной параллельной реализации неяв-ной схемы на основе метода LU-SGS.…”
Section: Introductionunclassified