Hierarchical key assignment scheme is an efficient cryptographic method for hierarchical access control, in which the encryption keys of lower classes can be derived by the higher classes. Such a property is an effective way to ensure the access control security of Internet of Things data markets. However, many researchers on this field cannot avoid potential single point of failure in key distribution, and some key assignment schemes are insecure against collusive attack or sibling attack or collaborative attack. In this paper, we propose a hierarchical key assignment scheme based on multilinear map to solve the multigroup access control in Internet of Things data markets. Compared with previous hierarchical key assignment schemes, our scheme can avoid potential single point of failure in key distribution. Also the central authority of our scheme (corresponding to the data owner in IoT data markets) does not need to assign the corresponding encryption keys to each user directly, and users in each class can obtain the encryption key via only a one-round key agreement protocol. We then show that our scheme satisfies the security of key indistinguishability under decisional multilinear Diffie-Hellman assumption. Finally, comparisons show the efficiency of our scheme and indicates that our proposed scheme can not only resist the potential attacks, but also guarantee the forward and backward security.