Abstract. Climate is critically affected by aerosols, which can alter cloud lifecycles and precipitation distribution through radiative and microphysical effects. In this study, aerosol and cloud properties datasets from MODIS onboard Aqua satellite and surface observations, including aerosol concentrations, raindrop size distribution, and meteorological parameters, were used to statistically quantify the effects of aerosols on low-level warm cloud microphysics and drizzle over northern Taiwan during fall seasons (from October 15 to November 30 of 2005–2017). Results indicated that clouds in northwestern Taiwan, which with active human activity is dominated by low-level clouds (e.g. warm, thin, and broken clouds). The observed effects of aerosols on warm clouds indicated aerosol indirect effects; increasing aerosol loading caused a decrease in cloud effective radius (CER), an increase in cloud optical thickness, an increase in cloud fraction, and a decrease in cloud top temperature under a fixed cloud water path. A quantitative value of aerosol–cloud interactions (ACI = (δ ln CER)/(δ ln α), changes in CER depend on changes in aerosols) were calculated to be 0.07 for our research domain. ACI values varied between 0.09 and 0.06 in surrounding clean and heavily polluted areas, respectively, which indicated that aerosol indirect effects were more sensitive in the clean area. Analysis of raindrop size distribution observations during high aerosol loading resulted in a decreased frequency of drizzle events, redistributed cloud water to more numerous and smaller droplets, and reduced collision–coalescence rates. However, in the scenario of light precipitation (≤ 1 mm h−1), high aerosol concentrations drive raindrops towards smaller droplet sizes and increase the appearance of drizzle drops. This study used long-term surface and satellite data to determine aerosol variations in northern Taiwan, effects on the clouds and precipitations, and applications to observational strategy planning for future research on aerosol–cloud–precipitation interactions.