The flooding method, which is used by many mobile ad-hoc routing protocols, is a process in which a route request packet (RREQ) is broadcasted from a source node to other nodes in the network. This often results in unnecessary re-transmissions, causing packet collisions and congestion in the network, a phenomenon called broadcast storm. This article presents firstly the impact of a different message forwarding probability on the RREQ and secondly a RREQ message forwarding scheme which is implemented on Ad-hoc On-Demand Distance Vector Routing (AODV) routing protocol, a Bayesian probability based the AODV extended version based on a modified version of Bayesian probability (AODV_EXT_BP) that reduces routing overheads, by calculating the probability with respect to the neighbour density as well as the posterior probability. The performance of the AODV_EXT_BP is compared to that of extended version of AODV (AODV_EXT), AODV, Destination Sequenced Distance Vector, dynamic source routing and Optimized Link State Routing protocols and the simulation results show that the AODV_EXT_BP protocol achieves better results in all sectors.