Astrocytes play a central role in the central nervous system (CNS), maintaining brain homeostasis, providing metabolic support to neurons, regulating connectivity of neural circuits, and controlling blood flow as an integral part of the blood-brain barrier. They have been increasingly implicated in the mechanisms of neurodegenerative diseases, prompting a greater need for methods that enable their study. The advent of human induced pluripotent stem cell (iPSC) technology has made it possible to generate patient-specific astrocytes and CNS cells using protocols developed by our team and others as valuable disease models. Yet isolating astrocytes from primary specimens or from in vitro mixed cultures for downstream analyses has remained challenging. To address this need, we performed a screen for surface markers that allow FACS sorting of astrocytes. Here we demonstrate that CD49f is an effective marker for sorting functional human astrocytes. We sorted CD49f + cells from a protocol we previously developed that generates a complex culture of oligodendrocytes, neurons and astrocytes from iPSCs. CD49f + -purified cells express all canonical astrocyte markers and perform characteristic functions, such as neuronal support and glutamate uptake.
1Of particular relevance to neurodegenerative diseases, CD49f + astrocytes can be stimulated to take on an A1 neurotoxic phenotype, in which they secrete proinflammatory cytokines and show an impaired ability to support neuronal maturation. This study establishes a novel marker for isolating functional astrocytes from complex CNS cell populations, strengthening the use of iPSC-astrocytes for the study of their regulation and dysregulation in neurodegenerative diseases.