A fundamental factor of digital image compression is the conversion processes. The intention of this process is to understand the shape of an image and to modify the digital image to a grayscale configuration where the encoding of the compression technique is operational. This article focuses on an investigation of compression algorithms for images with artistic effects. A key component in image compression is how to effectively preserve the original quality of images. Image compression is to condense by lessening the redundant data of images in order that they are transformed cost-effectively. The common techniques include discrete cosine transform (DCT), fast Fourier transform (FFT), and shifted FFT (SFFT). Experimental results point out compression ratio between original RGB images and grayscale images, as well as comparison. The superior algorithm improving a shape comprehension for images with grahic effect is SFFT technique.