Abstract:We know that compressive sensing can establish stable sparse recovery results from highly undersampled data under a restricted isometry property condition. In reality, however, numerous problems are coherent, and vast majority conventional methods might work not so well. Recently, it was shown that using the difference between 1-and 2-norm as a regularization always has superior performance. In this paper, we propose an adaptive p-1−2 model where the p-norm with p ≥ 1 measures the data fidelity and the 1−2-ter… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.