Abstract:The fractional Schrödinger equation (FSE) on the real line arises in a broad range of physical settings and their numerical simulation is challenging due to the nonlocal nature and the power law decay of the solution at infinity. In this paper, we propose a new spectral discretization scheme for the FSE in space based upon Malmquist-Takenaka functions. We show that this new discretization scheme achieves much better performance than existing discretization schemes in the case where the underlying FSE involves … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.