Many
polycyclic marine
alkaloids are thought to derive from partly
reduced macrocyclic alkylpyridine derivatives via a transannular Diels–Alder
reaction that forms their common etheno-bridged diaza-decaline core
(“Baldwin–Whitehead hypothesis”). Rather than
trying to emulate this biosynthesis pathway, a route to these natural
products following purely chemical logic was pursued. Specifically,
a Michael/Michael addition cascade provided rapid access to this conspicuous
tricyclic scaffold and allowed different handles to be introduced
at the bridgehead quarternary center. This flexibility opened opportunities
for the formation of the enveloping medium-sized and macrocyclic rings.
Ring closing alkyne metathesis (RCAM) proved most reliable and became
a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine
A, and nominal njaoamine I (the structure of which had to be corrected
in the aftermath of the synthesis). Best results were obtained with
molybdenum alkylidyne catalysts endowed with (tripodal) silanolate
ligands, which proved fully operative in the presence of tertiary
amines, quinoline, and other Lewis basic sites. RCAM was successfully
interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki
coupling sequence, or ring closing olefin metathesis (RCM) for the
closure of the second lateral ring; the use of RCM for the formation
of an 11-membered cycle is particularly noteworthy. Equally rare are
RCM reactions that leave a pre-existing triple bond untouched, as
the standard ruthenium catalysts are usually indiscriminative vis-à-vis
the different π-bonds. Of arguably highest significance, however,
is the use of two consecutive or even concurrent RCAM reactions en
route to nominal njaoamine I as the arguably most complex of the chosen
targets.