Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aiming at the problems of low precision, slow speed and difficult detection of small target pear fruit in a real environment, this paper designs a pear fruit detection model in a natural environment based on a lightweight Transformer architecture based on the RT-DETR model. Meanwhile, Xinli No. 7 fruit data set with different environmental conditions is established. First, based on the original model, the backbone was replaced with a lightweight FasterNet network. Secondly, HiLo, an improved and efficient attention mechanism with high and low-frequency information extraction, was used to make the model lightweight and improve the feature extraction ability of Xinli No. 7 in complex environments. The CCFM module is reconstructed based on the Slim-Neck method, and the loss function of the original model is replaced with the Shape-NWD small target detection mechanism loss function to enhance the feature extraction capability of the network. The comparison test between RT-DETR and YOLOv5m, YOLOv7, YOLOv8m and YOLOv10m, Deformable-DETR models shows that RT-DETR can achieve a good balance in terms of model lightweight and recognition accuracy compared with other models, and comprehensively exceed the detection accuracy of the current advanced YOLOv10 algorithm, which can realize the rapid detection of Xinli No. 7 fruit. In this paper, the accuracy rate, recall rate and average accuracy of the improved model reached 93.7%, 91.9% and 98%, respectively, and compared with the original model, the number of params, calculation amount and weight memory was reduced by 48.47%, 56.2% and 48.31%, respectively. This model provides technical support for Xinli No. 7 fruit detection and model deployment in complex environments.
Aiming at the problems of low precision, slow speed and difficult detection of small target pear fruit in a real environment, this paper designs a pear fruit detection model in a natural environment based on a lightweight Transformer architecture based on the RT-DETR model. Meanwhile, Xinli No. 7 fruit data set with different environmental conditions is established. First, based on the original model, the backbone was replaced with a lightweight FasterNet network. Secondly, HiLo, an improved and efficient attention mechanism with high and low-frequency information extraction, was used to make the model lightweight and improve the feature extraction ability of Xinli No. 7 in complex environments. The CCFM module is reconstructed based on the Slim-Neck method, and the loss function of the original model is replaced with the Shape-NWD small target detection mechanism loss function to enhance the feature extraction capability of the network. The comparison test between RT-DETR and YOLOv5m, YOLOv7, YOLOv8m and YOLOv10m, Deformable-DETR models shows that RT-DETR can achieve a good balance in terms of model lightweight and recognition accuracy compared with other models, and comprehensively exceed the detection accuracy of the current advanced YOLOv10 algorithm, which can realize the rapid detection of Xinli No. 7 fruit. In this paper, the accuracy rate, recall rate and average accuracy of the improved model reached 93.7%, 91.9% and 98%, respectively, and compared with the original model, the number of params, calculation amount and weight memory was reduced by 48.47%, 56.2% and 48.31%, respectively. This model provides technical support for Xinli No. 7 fruit detection and model deployment in complex environments.
Considering animal welfare, the free-range laying hen farming model is increasingly gaining attention. However, in some countries, large-scale farming still relies on the cage-rearing model, making the focus on the welfare of caged laying hens equally important. To evaluate the health status of caged laying hens, a dataset comprising visible light and thermal infrared images was established for analyses, including morphological, thermographic, comb, and behavioral assessments, enabling a comprehensive evaluation of the hens’ health, behavior, and population counts. To address the issue of insufficient data samples in the health detection process for individual and group hens, a dataset named BClayinghens was constructed containing 61,133 images of visible light and thermal infrared images. The BClayinghens dataset was completed using three types of devices: smartphones, visible light cameras, and infrared thermal cameras. All thermal infrared images correspond to visible light images and have achieved positional alignment through coordinate correction. Additionally, the visible light images were annotated with chicken head labels, obtaining 63,693 chicken head labels, which can be directly used for training deep learning models for chicken head object detection and combined with corresponding thermal infrared data to analyze the temperature of the chicken heads. To enable the constructed deep-learning object detection and recognition models to adapt to different breeding environments, various data enhancement methods such as rotation, shearing, color enhancement, and noise addition were used for image processing. The BClayinghens dataset is important for applying visible light images and corresponding thermal infrared images in the health detection, behavioral analysis, and counting of caged laying hens under large-scale farming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.