Long Term Evolution (LTE) and Long Term Evolution-Advanced (LTE-A) support a better data transmission service than 3G dose and are globally commercialized technologies in a cyber world that is essential for constructing a future mobile environment, since network traffics have exponentially increased as people have started to use more than just one mobile device. However, when User Equipment (UE) is executing initial attach processes to access LTE networks, there is a vulnerability in which identification parameters like International Mobile Subscriber Identity (IMSI) and Radio Network Temporary Identities (RNTI) are transmitted as plain texts. It can threat various services that are commercialized therewith in a cyber world. Therefore, a security scheme is proposed in this paper where identification parameters can be securely transmitted and hidden in four cases where initial attach occurs between UE and Mobility Management Entity (MME). The proposed security scheme not only supports encrypted transmission of identification parameters but also mutual authentication between Evolved Node B (eNB) and MME to make a secure cyber world. Additionally, performance analysis results using an OPNET simulator showed the satisfaction of the average delay rate that is specified in LTE standards.