In this paper, we propose a novel first-order reformulation of the most well-known Boussinesq-type systems that are used in ocean engineering. This has the advantage of collecting in a general framework many of the well-known systems used for dispersive flows. Moreover, it avoids the use of high-order derivatives which are not easy to treat numerically, due to the large stencil usually needed. These first-order PDE dispersive systems are then approximated by a novel set of first-order hyperbolic equations. Our new hyperbolic approximation is based on a relaxed augmented system in which the divergence constraints of the velocity flow variables are coupled with the other conservation laws via an evolution equation for the depth-averaged non-hydrostatic pressures. The most important advantage of this new hyperbolic formulation is that it can be easily discretized with explicit and high-order accurate numerical schemes for hyperbolic conservation laws. There is no longer need of solving implicitly some linear system as it is usually done in many classical approaches of Boussinesq-type models. Here a third-order finite volume scheme based on a CWENO reconstruction has been used. The scheme is well-balanced and can treat correctly wet-dry areas and emerging topographies. Several numerical tests, which include idealized academic benchmarks and laboratory experiments are proposed, showing the advantage, efficiency and accuracy of the technique proposed here.