2022
DOI: 10.3844/jcssp.2022.589.598
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Video Compression Framework using Deep Convolutional Neural Networks (DCNN)

Abstract: In the current world, video streaming has grown in popularity and now accounts for a large percentage of internet traffic, making it challenging for service providers to broadcast videos at high rates while utilizing less storage space. To follow inefficient analytical coding design, previous video compression prototypes require non-learning-based designs. As a result, we propose a DCNN technique that integrates OFE-Net, MVE-Net, MVD-Net, MC-Net, RE-Net, and RD-Net for getting an ideal collection of frames by … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?