An Efficient Workflow Scheduling Using Genetically Modified Golden Jackal Optimization With Recurrent Autoencoder in Cloud Computing
Saurav Tripathi,
Sarsij Tripathi
Abstract:In this paper, a novel workflow scheduling framework is proposed using genetically modified golden jackal optimization (GM‐GJO) with recurrent autoencoder. An integrated autoencoder and bidirectional gated recurrent unit (iAE‐BiGRU) are used to forecast the number of virtual machines (VMs) needed to manage the system's present workload. The following step involves assigning the tasks of several workflows to cloud VMs through the use of the GM‐GJO method for multiworkflow scheduling. GM‐GJO provides optimal wor… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.