The spin degree of freedom of an electron or a nucleus is one of the most basic properties of nature and functions as an excellent qubit, as it provides a natural two-level system that is insensitive to electric fields, leading to long quantum coherence times. This coherence survives when the spin is isolated and controlled within nanometer-scale, lithographically fabricated semiconductor devices, enabling the existing microelectronics industry to help advance spin qubits into a scalable technology. Driven by the burgeoning field of quantum information science, worldwide efforts have developed semiconductor spin qubits to the point where quantum state preparation, multiqubit coherent control, and single-shot quantum measurement are now routine. The small size, high density, long coherence times, and available industrial infrastructure of these qubits provide a highly competitive candidate for scalable solid-state quantum information processing. We review the physics of semiconductor spin qubits, focusing not only on the early achievements of spin initialization, control, and readout in GaAs quantum dots, but also on recent advances in Si and Ge spin qubits, including improved charge control and readout, coupling to other quantum degrees of freedom, and scaling to larger system sizes. We begin by introducing the four major types of spin qubits: single spin qubits, donor spin qubits, singlet-triplet spin qubits, and exchange-only spin qubits. We then review the mesoscopic physics of quantum dots, including single-electron charging, valleys, and spin-orbit coupling. We next give a comprehensive overview of the physics of exchange interactions, a crucial resource for single-and two-qubit control in spin qubits. The bulk of this review is centered on the presentation of results from each major spin qubit type, the present limits of fidelity, and a brief overview of alternative spin qubit platforms. We then give a physical description of the impact of noise on semiconductor spin qubits, aided in large part by an introduction to the filter function formalism. Lastly, we review recent efforts to hybridize spin qubits with superconducting systems, including charge-photon coupling, spin-photon coupling, and long-range cavity-mediated spin-spin interactions. Cavity-based readout approaches are also discussed. This review is intended to give an appreciation for the future prospects of semiconductor spin qubits, while highlighting the key advances in mesoscopic physics over the past two decades that underlie the operation of modern quantum-dot and donor-spin qubits.
CONTENTS1. Spin transport, spin SWAPs, and spin-CTAP 24 2. Superexchange 25 3. Capacitive and electric dipole-dipole couplings 26 4. Cavity QED 26 V. Quantum gates and quantum circuits 26 A. Loss-DiVincenzo single spin qubits 27 1. Initialization and readout 27 2. Single-qubit gates 28 3. Two-qubit gates 29 4. Limits of fidelity -randomized benchmarking 30 B. Donor spin qubits 31 1. Donor electron spin initialization and readout 31 2. Donor electron spin single-qu...