Electrofluorochromic (EFC) materials and devices with controllable fluorescence properties show great application potential in advanced anticounterfeiting, information storage and display. However, the low color purity caused by the broad emission spectra and underperforming switching time of the existing EFC materials limit their application. Through biomimetic exploration and the study of reversible electrochemical responsive coordination reactions, boron–nitrogen embedded polyaromatics (B,N‐PAHs) with narrow‐band emission and high color purity have been successfully integrated into EFC systems, which also help to better understand the role of boron in biological activity. The EFC device achieve good performance containing quenching efficiency greater than 90% within short switching time (ton: 0.6 s, toff: 2.4 s), and nearly no performance change after 200 cycles test. Three primary color (red, green, and blue) EFC devices are successfully prepared. In addition, new phenomena are obtained and discussed in this biomimetic exploration of related boron reactions. The success and harvest of this exploration are expected to provide new ideas for optimizing properties and broadening applications of EFC materials. Moreover, it may provide ideas and reference significance for further exploring and understanding the function of boron compounds in biological systems.