In this study, a multi-parameter perturbation method is used for the solution of a functionally-graded, thin, circular piezoelectric plate. First, by assuming that elastic, piezoelectric, and dielectric coefficients of the functionally-graded materials vary in the form of the same exponential function, the basic equation expressed in terms of two stress functions and one electrical potential function are established in cylindrical coordinate system. Three piezoelectric coefficients are selected as perturbation parameters, and the established equations are solved by the multi-parameter perturbation method, thus obtaining up to first-order perturbation solutions. The validity of the perturbation solution obtained is verified by numerical simulations, based on layer-wise theory. The perturbation process indicates that adopting three piezoelectric coefficients as perturbation parameters follows the basic idea of perturbation theory—i.e., if the piezoelectricity may be regarded as a kind of introduced disturbance, the zero-order solution of the disturbance system corresponds exactly to the solution of functionally-graded plates without piezoelectricity. The result also indicates that the deformation magnitude of piezoelectric plates is smaller than that of plates without piezoelectricity, due to the well-known piezoelectric stiffening effect.