Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid-structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to reproduce the experimental test. Lastly, the FSI model was used to simulate the virtual implant and performance in a patient-specific case. Results showed that the leaflet opening area during the cycle was similar to that of the in vitro test and the difference of the maximum leaflet opening between the two methodologies was of 0.42%. Furthermore, the FSI simulation quantified the pressure and velocity fields. The computed strain amplitudes in the stent frame showed that this distribution in the patient-specific case is highly affected by the aortic root anatomy, suggesting that the in vitro tests that follow standards might not be representative of the real behavior of the percutaneous valve. The patient-specific case also compared in vivo literature data on fast opening and closing characteristics of the aortic valve during systolic ejection. FSI simulations represent useful tools in determining design errors or optimization potentials before the fabrication of aortic valve prototypes and the performance of tests.