Fourth generation aircraft, such as the McDonnell Douglas F-15 "Eagle," and the fifth generation platforms that followed, including the Lockheed Martin F-22 "Raptor," pose unique physiological challenges to arguably the most important "system" on the aircraft, the human. Advances in aeronautical engineering have enabled next-generation aircraft to operate well beyond the natural limits of human endurance. Although the demand for unmanned systems is increasing exponentially, continued use of manned aircraft is still desirable within civilian and military operations for various safety and security reasons. With the continued presence of pilots in cockpits, future aircraft designers will require a basic understanding of the unique physiological factors affecting human performance in this domain. Given knowledge of human limitations, strategies for real-time on board monitoring of the "human system" may be employed to increase the safety of the pilot and aircraft.