An Empirical Analysis of Diffusion, Autoencoders, and Adversarial Deep Learning Models for Predicting Dementia Using High-Fidelity MRI
Pranshav Gajjar,
Manav Garg,
Shivani Desai
et al.
Abstract:This study explores cutting-edge computational technologies and intelligent methods to create realistic synthetic data, focusing on dementia-centric Magnetic Resonance Imaging (MRI) scans related to Alzheimer's and Parkinson's diseases. The research delves into Generative Adversarial Networks (GANs), Variational Autoencoders, and Diffusion Models, comparing their efficacy in generating synthetic MRI scans. Using datasets from Alzheimer's and Parkinson's patients, the study reveals intriguing findings. In the A… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.