2023
DOI: 10.48550/arxiv.2303.12818
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

An Empirical Analysis of the Shift and Scale Parameters in BatchNorm

Abstract: Batch Normalization (BatchNorm) is a technique that improves the training of deep neural networks, especially Convolutional Neural Networks (CNN). It has been empirically demonstrated that BatchNorm increases performance, stability, and accuracy, although the reasons for such improvements are unclear. BatchNorm includes a normalization step as well as trainable shift and scale parameters. In this paper, we empirically examine the relative contribution to the success of BatchNorm of the normalization step, as c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?