This version is available at https://strathprints.strath.ac.uk/26164/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. A new high-pressure phase of pure nitric acid (HNO 3 ) has been characterised at 1.6 GPa at room temperature by high-pressure neutron powder and X-ray single-crystal diffraction techniques. This is the first crystalline phase obtained upon compression of liquid nitric acid at room temperature and appears to be the stable phase up to pressures of at least 4 GPa. The crystal structure of this new phase shows some similarities to that of the low-temperature phase of nitric acid at ambient pressure, which has been redetermined as part of this study. Both structures share a herringbone packing of hydrogen-bonded molecular catemers, although the presence of disorder within the hydrogen bonds within one of the catemers of the low-temperature phase makes its structure comparatively more complex.