IntroductionAlthough interest in including non-randomised studies of interventions (NRSIs) in meta-analysis of randomised controlled trials (RCTs) is growing, estimates of effectiveness obtained from NRSIs are vulnerable to greater bias than RCTs. The objectives of this study are to: (1) explore how NRSIs can be integrated into a meta-analysis of RCTs; (2) assess concordance of the evidence from non-randomised and randomised trials and explore factors associated with agreement; and (3) investigate the impact on estimates of pooled bodies of evidence when NRSIs are included.Methods and analysisWe will conduct a systematic survey of 210 systematic reviews that include both RCTs and NRSIs, published from 2017 to 2022. We will randomly select reviews, stratified in a 1:1 ratio by Core vs non-Core clinical journals, as defined by the National Library of Medicine. Teams of paired reviewers will independently determine eligibility and abstract data using standardised, pilot-tested forms. The concordance of the evidence will be assessed by exploring agreement in the relative effect reported by NRSIs and RCT addressing the same clinical question, defined as similarity of the population, intervention/exposure, control and outcomes. We will conduct univariable and multivariable logistic regression analyses to examine the association of prespecified study characteristics with agreement in the estimates between NRSIs and RCTs. We will calculate the ratio of the relative effect estimate from NRSIs over that from RCTs, along with the corresponding 95% CI. We will use a bias-corrected meta-analysis model to investigate the influence on pooled estimates when NRSIs are included in the evidence synthesis.Ethics and disseminationEthics approval is not required. The findings of this study will be disseminated through peer-reviewed publications, conference presentations and condensed summaries for clinicians, health policymakers and guideline developers regarding the design, conduct, analysis, and interpretation of meta-analysis that integrate RCTs and NRSIs.