Ride-sharing platforms employ surge pricing to match anticipated capacity spillover with demand. We develop an optimization model to characterize the relationship between surge price and spillover. We test predicted relationships using a spatial panel model on a dataset from Ubers operation. Results reveal that Ubers pricing accounts for both capacity and price spillover. There is a debate in the management community on the ecacy of labor welfare mechanisms associated with shared capacity. We conduct counterfactual analysis to provide guidance in regards to the debate, for managing congestion, while accounting for consumer and labor welfare through this online platform.