2022
DOI: 10.24251/hicss.2022.149
|View full text |Cite
|
Sign up to set email alerts
|

An Empirical Study of Factors Affecting Language-Independent Models

Abstract: Scaling existing applications and solutions to multiple human languages has traditionally proven to be difficult, mainly due to the language-dependent nature of preprocessing and feature engineering techniques employed in traditional approaches. In this work, we empirically investigate the factors affecting language-independent models built with multilingual representations, including task type, language set and data resource.On two most representative Natural Language Processing taskssentence classification a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?