High frequency (HF) band has both military and civilian uses. It can be used either as a primary or backup communication link. Automatic modulation classification (AMC) is of an utmost importance in this band for the purpose of communications monitoring; e.g., signal intelligence and spectrum management. A widely used method for AMC is based on pattern recognition (PR). Such a method has two main steps: feature extraction and classification. The first step is generally performed in the presence of channel noise. Recent studies show that HF noise could be modeled by Gaussian or bi-kappa distributions, depending on day-time. Therefore, it is anticipated that change in noise model will have impact on features extraction stage. In this article, we investigate the robustness of well known digitally modulated signal features against variation in HF noise. Specifically, we consider temporal time domain (TTD) features, higher order cumulants (HOC), and wavelet based features. In addition, we propose new features extracted from the constellation diagram and evaluate their robustness against the change in noise model. This study is targeting 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, and 64QAM modulations, as they are commonly used in HF communications.