An empirical study of testing machine learning in the wild
Moses Openja,
Foutse Khomh,
Armstrong Foundjem
et al.
Abstract:Background:
Recently, machine and deep learning (ML/DL) algorithms have been increasingly adopted in many software systems. Due to their inductive nature, ensuring the quality of these systems remains a significant challenge for the research community. Traditionally, software systems were constructed deductively, by writing explicit rules that govern the behavior of the system as program code. However, ML/DL systems infer rules from training data i.e., they are generated inductively). Recent resear… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.