Image dehazing methods can restore clean images from hazy images and are popularly used as a preprocessing step to improve performance in various image analysis tasks. In recent times, deep learning-based methods have been used to sharply increase the visual quality of restored images, but they require a long computation time. The processing time of image-dehazing methods is one of the important factors to be considered in order not to affect the latency of the main image analysis tasks such as detection and segmentation. We propose an end-to-end network model for real-time image dehazing. We devised a zoomed convolution group that processes computation-intensive operations with low resolution to decrease the processing time of the network model without performance degradation. Additionally, the zoomed convolution group adopts an efficient channel attention module to improve the performance of the network model. Thus, we designed a network model using a zoomed convolution group to progressively recover haze-free images using a coarse-to-fine strategy. By adjusting the sampling ratio and the number of convolution blocks that make up the convolution group, we distributed small and large computational complexities respectively in the early and later operational stages. The experimental results with the proposed method on a public dataset showed a real-time performance comparable to that of another state-of-the-art (SOTA) method. The proposed network’s peak-signal-to-noise ratio was 0.8 dB lower than that of the SOTA method, but the processing speed was 10.4 times faster.