Nowadays, people are very facilitated by the existence of various shopping centers, including retail. Because many retailers are close to each other, Alfamart Lodadi must have a good marketing strategy. So far, the strategy used is sometimes inaccurate because it is not based on customer segmentation. Therefore, the purpose of this research is to help retail owners to make decisions regarding the right marketing strategy with three methods so that Alfamart Lodadi can compete and increase sales. The Analytical Hierarchy Process (AHP) is employed to find the priority variables of customer segmentation; meanwhile, the K-Means Clustering is used to group customers based on the similarity of predetermined characteristics. AR-MBA is used to find out the best rules, and products are rarely, sufficient, and frequently purchased. The results of this research, based on AHP, obtained five segmentation priority variables based on the largest eigenvector values. There are income, age, expenditure, distance, and shopping intensity with each eigenvector value of 0.13; 0.16; 0.12; 0.12; 0.17. From clustering, there are three customer clusters with different strategies, including free shipping when shopping, product discounts for certain periods, and providing catalogs and discounts on each transaction and offer notifications. Then, this research also obtained three strategies based on AR-MBA. These include making a catalog by bringing frequently purchased products closer together, choosing a layout for shopping places by bringing frequently purchased products closer together, and making shopping coupons for rarely purchased products. With several strategic choices, companies can make decisions appropriately according to the desired criteria.