More than Moore technology is driving semiconductor devices towards higher complexity and further miniaturization. Device miniaturization strongly impacts failure analysis (FA), since it triggers the need for non-destructive approaches with high resolution in combination with cost and time efficient execution. Conventional scanning acoustic microscopy (SAM) is an indispensable tool for failure analysis in the semiconductor industry, however resolution and penetration capabilities are strongly limited by the transducer frequency. In this work, we conduct an acoustic interferometry approach, based on a SAM-setup utilizing 100 MHz lenses and enabling not only sufficient penetration depth but also high resolution for efficient in-line FA of Through Silicon Vias (TSVs). Accompanied elastodynamic finite integration technique-based simulations, provide an in-depth understanding concerning the acoustic wave excitation and propagation. We show that the controlled excitation of surface acoustic waves extends the contingency towards the detection of nm-sized cracks, an essential accomplishment for modern FA of 3D-integration technologies.