Multiple biotic and abiotic factors influence rice cultivation. These factors limit productivity and yield, as well as an irrational use of agrochemicals in rice cultivation. A sustainable alternative is using selected growth-promoting microorganisms to increase nutritional efficiency. In the present study, the direct mechanisms of growth promotion in two strains of Bacillus, three strains of Priestia, and two strains of Burkholderia endophytes of rice were characterized. Bacillus siamensis TUR07-02b and Priestia megaterium SMBH14-02 were selected to promote Oryza sativa var’s growth. “Bellavista” was used at different doses (50, 75, and 100%) of mineral nitrogen (N) using a randomized block design by quintuplicate. Both strains, SMBH14-02 and TUR07-02b, presented outstanding promoter characteristics, including auxin production (123.17 and 335.65 μg mL−1, respectively) and biological nitrogen fixation capacity. Similarly, B. siamensis TUR07-02b could solubilize phosphate-Ca (20.94 μg mL−1), cellulases, and pectinases. Under greenhouse conditions, co-inoculated plants receiving 75% of the total dose of mineral nitrogen showed increased agronomic parameters in relation to panicle length, grains per panicle, grain yield, and harvest index by 25.0, 30.7, 39.5, and 12.5%, respectively, compared to the 75% fertilized treatment without inoculation. The strains of B. siamensis TUR07-02b and P. megaterium SMBH14-02 are potential microbial resources in the formulation of new inoculants to reduce the use of nitrogenous fertilizers. Thus, agronomic validation of the inoculant consortium at the field level will be an essential step in providing an alternative for the sustainable management of rice cultivation and increased productivity of rice farmers in the San Martín region.