Wireless sensor networks (WSNs) are employed in various applications from healthcare to military. Due to their limited, tiny power sources, energy becomes the most precious resource for sensor nodes in such networks. To optimize the usage of energy resources, researchers have proposed several ideas from diversified angles. Clustering of nodes plays an important role in conserving energy of WSNs. Clustering approaches focus on resolving the conflicts arising in effective data transmission. In this chapter, we have outlined a few modern energy-efficient clustering approaches to improve the lifetime of WSNs. The proposed clustering methods are: (i) fuzzy-logic-based cluster head election, (ii) efficient sleep duty cycle for sensor nodes, (iii) hierarchical clustering, and (iv) estimated energy harvesting. Classical clustering approaches such as low energy adaptive clustering hierarchy (LEACH) and selected contemporary clustering methods are considered for comparing the performance of proposed approaches. The proposed modern clustering approaches exhibit better lifetime compared to the selected benchmarked protocols.